a2 United States Patent

Maheshwari

US009176874B1

US 9,176,874 B1
Nov. 3, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(63)

(1)

(52)

DIRECT MAPPING OF DATA IN A STORAGE
SYSTEM WITH A FLASH CACHE

Applicant: Nimble Storage, Inc., San Jose, CA

(US)
Inventor: Umesh Maheshwari, San Jose, CA (US)
Assignee: Nimble Storage, Inc., San Jose, CA
(US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/750,734

Filed: Jun. 25, 2015

Related U.S. Application Data

Continuation of application No. 14/656,568, filed on
Mar. 12, 2015, now Pat. No. 9,098,405, which is a
continuation of application No. 14/221,894, filed on
Mar. 21, 2014, now Pat. No. 9,015,406, which is a
continuation of application No. 13/595,211, filed on
Aug. 27, 2012, now Pat. No. 8,719,488, which is a
continuation of application No. 12/636,693, filed on
Dec. 11, 2009, now Pat. No. 8,285,918.

Int. Cl1.

GO6F 12/00 (2006.01)

GO6F 12/06 (2006.01)

G11C 1400 (2006.01)

GO6F 12/02 (2006.01)

G1iC 7710 (2006.01)

GO6F 12/08 (2006.01)

U.S. CL

CPC ... GO6F 12/0638 (2013.01); GO6F 12/0246

(2013.01); GOGF 12/0866 (2013.01); GO6F
12/0873 (2013.01); G1IC 7/1072 (2013.01);
G1IC 14/0018 (2013.01); GOGF 2212/205
(2013.01); GO6F 2212/7201 (2013.01)

Backend Block Address
300

Cache Map
02

Cache Block Address
304

|

Location Map
206

l

Physical Location

(2

(58) Field of Classification Search
CPC GOG6F 12/0246; GOGF 12/0866; GO6F
12/0873; GOGF 2212/7201
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

Moran et al.

Maheshwari 711/103
Maheshwari ... 711/103
Eschmann et al. 711/143
Trika et al.

Leeetal.

Gorobets et al.

5,519,853 A 5/1996
8,285,918 B2* 10/2012
8,719,488 B2* 5/2014
2005/0144396 Al* 6/2005
2007/0005928 Al 1/2007
2007/0186065 Al 8/2007
2010/0174845 Al 7/2010

OTHER PUBLICATIONS

Office Action dated Dec. 21, 2011, from U.S. Appl. No. 12/636,693,
filed Dec. 11, 2009, 8 pages.

Response to Office Action filed Apr. 13, 2012, from U.S. Appl. No.
12/636,693, filed Dec. 11, 2009, 13 pages.

Supplemental Response to Office Action filed Apr. 16, 2012, from
U.S. Appl. No. 12/636,693, filed Dec. 11, 2009, 9 pages.

(Continued)

Primary Examiner — Shawn X Gu
(74) Attorney, Agent, or Firm — Ascenda Law Group, PC

(57) ABSTRACT

A storage device made up of multiple storage media is con-
figured such that one such media serves as a cache for data
stored on another of such media. The device includes a con-
troller configured to manage the cache by consolidating infor-
mation concerning obsolete data stored in the cache with
information concerning data no longer desired to be stored in
the cache, and erase segments of the cache containing one or
more of the blocks of obsolete data and the blocks of data that
are no longer desired to be stored in the cache to produce
reclaimed segments of the cache.

6 Claims, 5 Drawing Sheets

Backend Block Address
300

3

Cache-Location Map
310

3

Physical Location
308

(b)

US 9,176,874 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

Final Office Action dated Jun. 15, 2012, from U.S. Appl. No.
12/636,693, filed Dec. 11, 2009, 11 pages.

Response to Final Office Action filed Aug. 15, 2012, from U.S. Appl.
No. 12/636,693, filed Dec. 11, 2009, 10 pages.

Notice of Allowance dated Aug. 28, 2012, from U.S. Appl. No.
12/636,693, filed Dec. 11, 2009, 8 pages.

Office Action dated Mar. 20, 2013, from U.S. Appl. No. 13/595,211,
filed Aug. 27, 2012, 8 pages.

Response to Office Action filed Oct. 10, 2013, from U.S. Appl. No.
13/595,211, filed Aug. 27, 2012, 6 pages.

Notice of Allowance dated Dec. 23, 2013, from U.S. Appl. No.
13/595,211, filed Aug. 27, 2012, 8 pages.

Office Action dated Aug. 25, 2014, from U.S. Appl. No. 14/221,894,
filed Mar. 21, 2014, 12 pages.

Response to Office Action filed Nov. 25, 2014, from U.S. Appl. No.
14/221,894, filed Mar. 21, 2014, 9 pages.

Notice of Allowance dated Mar. 2, 2015, from U.S. Appl. No.
14/221,894, filed Mar. 21, 2014, 12 pages.

Office Action dated Apr. 20, 2015, from U.S. Appl. No. 14/656,568,
filed Mar. 12, 2015, 10 pages.

Response to Office Action dated Jun. 2, 2015, from U.S. Appl. No.
14/656,568, filed Mar. 12, 2015, 8 pages.

Notice of Allowance dated Jun. 24, 2015, from U.S. Appl. No.
14/656,568, filed Mar. 12, 2015, 10 pages.

* cited by examiner

US 9,176,874 B1

Sheet 1 of 5

Nov. 3, 2015

U.S. Patent

g1 aunbig

ZiT =2omaq Buiyoen T11 @aneq efiesoig puapeg
vor
m 5 userd
B0t : L ggo1
H _ AN N olj0u0
0901 i8jjouod
Japonu0Y / 1

¢

2ot
%sig preH

SoEpdU| JSOH asejiajuy

ot
Wvda

olt
Wvda

001 9%1neQ ebeloig

0L 0T eoineq abieio)g
ysel4

V1 ainbig

zor
A8 preH

801
AN Yool
23epolu) JSOH Jelequag
m 55 ort

WvdQ

US 9,176,874 B1

Sheet 2 of 5

Nov. 3, 2015

U.S. Patent

Z amnbi4
&) ol v s |2 el]els iwie gz o
5202 wawbsg 520z wawbag rzoz awbag e €20z awbag Zzoz ewbag ‘202 wowbeg
N A R %7
(8 lalv]si: el jels wlela|ol 5 \\ \\ \ \\
hr i) D) Vs
%20z wowbag Sz0z wewbeg rzpZ Wwowbeg ove £Z0Z yuowbsg 2z0zZ uswbag ‘zoz wowbog

(p) wlefa]oe opwm\\\\%\hw\m F\\qu

i

0z0z Juswbeg $20Z yuewbog ¥z0z wawbss (74 £20Z uewbeg Zzoz yuswbag 2oz wawbag

(2} Svmm\\\\mhwm _.@N

20z wawbog 202 yuewbag vzoeZ wawbag £207 wawbsg Zzog wowibag ‘z0z uawibsg

{a) vleleice PQN

920¢ Wwewbog Sz0¢ wawbag vz0z wewbag voe €20z wawbog Zgog wawbsg izoz wewbeg
(e) L le |z
920 juawbag £20Z wawbsg vzoz juawbag £ €202 juawbag Izoz wawbag 1z02 wawubeg

U.S. Patent Nov. 3, 2015 Sheet 3 of 5 US 9,176,874 B1

Backend Block Address
300

,///(mmmmm

Backend Block Address

Cache Map
300

302

B

,///(mmmm”m.,

Cache Block Address Cache-Location Map
304 310

A fprrerrsrsrsrereress

B

Location Map Physical Location
306 308

A rrnrrrrsrsrsrerery

(b)
Physical Location
308

(a)

Figure 3

US 9,176,874 B1

Sheet 4 of 5

Nov. 3, 2015

U.S. Patent

()

{a)

(e)

Bleq pI0J, ﬂ/////u

eje(919|0sqQ §

 onbi
y A A / 8 zi 9
920% uswbag g0t ewbeg YZor wawbeg ooF tZoy wawbag g0y Juawbag +Zop Wewbeg
\ N\ 77, ANV
L I N e N 3 N %// \\ \ A NN 74
“Z0y wowbas SZ0¥ Juewbag vZop wowbos 007 £2ov uowbes ZZ0Y Juabes 2oy Juswbag
N N N . 7 YN
8 9 14 L G
NEXEINEN 7 AN
220y yswbes 520y wewbes ¥Z0y wewbes (177 €20v uawibog ZZop Jewbos ‘Zov Juswbag

U.S. Patent

1
|
o

Figure 5

Nov. 3, 2015 Sheet 5 of 5

Initiate Garbage Collection
502

US 9,176,874 B1

-8

4

A rnerspeesrrn)

|dentify Obsolete Blocks
504

Ao

Obtain Cold Block Information
506

/&Z”m”m

Identify Segments Having Largest Number of
Obsolete/Cold Blocks
508

%”””m
2

(Optional) Select Subset of Eligible / Identified
Segments
510

e

Wirite Valid Data from Selected Segments to
Fresh Segments
512

///4’}/”””/””,

Erase Segments with No Valid Data
514

r/&rmvmw””n
%

Done?

|U'|
e
(o}

tffyeerrirns [T\ woenssersesres

Quit

US 9,176,874 B1

1
DIRECT MAPPING OF DATA IN A STORAGE
SYSTEM WITH A FLASH CACHE

RELATED APPLICATIONS

The present application is a Continuation of U.S. patent
application Ser. No. 14/656,568 filed Mar. 12, 2015, which is
a Continuation of U.S. patent application Ser. No. 14/221,894
filed Mar. 21, 2014 (now issued as U.S. Pat. No. 9,015,406),
which is a Continuation of U.S. patent application Ser. No.
13/595,211 filed Aug. 27, 2012 (now issued as U.S. Pat. No.
8,719,488), which is a Continuation of U.S. patent applica-
tion Ser. No. 12/636,693 filed Dec. 11, 2009 (now issued as
U.S. Pat. No. 8,285,918), all of which are incorporated herein
by reference.

FIELD OF THE INVENTION

The present invention relates to the use of a flash memory-
based cache for data stored in a hard disk-based storage
device and, in particular, to techniques for integrating cache
management operations with write coalescing and providing
other efficiencies in such a caching device.

BACKGROUND

As most computer users know, data storage is of paramount
importance. Different forms of data storage devices have
been developed to address different needs. For example, some
data storage devices are optimized to allow very rapid read
and write accesses, so as not to present a bottleneck to other
processing operations involving the data being read from or
written to the storage device. Usually, these high speed read/
write storage devices can only accommodate a limited
amount of data and/or are expensive. Other storage devices
are designed to accommodate large volumes of data (e.g.,
terabytes of data), but operate at much slower speeds. Such
devices are usually intended for applications where the cost of
high speed storage devices is not justified.

A popular form of storage system is one that uses rapidly
rotating disks coated with a magnetic material to store data in
the form of magnetically encoded information elements.
These so-called hard disk drives (HDD), or simply hard disks,
are found in many personal computers and dedicated storage
appliances. Hard disks can offer significant available storage
space (e.g., on the order of terabytes), but the speed at which
data can be read from such devices is limited by physical
properties such as the size of the disk(s) on which the data is
stored, the speed at which the disk(s) rotate, and the time
required for the read head to be maneuvered into the correct
position to read the requested data information elements (the
so-called seek time).

So-called solid state storage devices, typically those that
employ flash memory arrays as the storage medium, offer
improved read times, in part because there are no moving
parts associated with such a device. Write times, however, are
often worse than those associated with hard disks because
flash arrays can only be written in relatively large “erase
block” sizes (e.g., typically 128 KB-512 KB), which must be
erased and rewritten in their entirety even if only a small
amount of data within the block needs to be updated.

To address the inefficiencies inherent with writes to a flash
array, flash memory controllers typically employ a process
known as write coalescing. This allows the flash controllers to
deliver acceptable performance for random writes (i.e., writes
to random, non-sequential addresses within the flash array).
Write coalescing uses principles that were first developed for

10

15

20

25

30

35

40

45

50

55

60

65

2

log structured file systems. In essence, this technique bundles
together or coalesces a group of random writes so that the data
associated with those applications is written to a physically
contiguous region of flash memory, called a “segment” (in
flash, a segment should be an integral multiple of the erase
block size).

An associated process performed by the flash controller,
known as “garbage collection”, ensures that large segments of
the flash array are kept available for the contiguous writes
required for proper write coalescing. As an application
updates data at arbitrary logical addresses, and those data
blocks are written to new physical locations in the flash array,
any preexisting versions of the data in previously written
portions of the array are marked as “obsolete”, meaning that
these versions are no longer needed. Note, the data blocks
referred to immediately above are best understood as units for
writing to the flash and are different than the erase blocks
referred to previously. These data blocks are typically much
smaller than the erase blocks, e.g., on the order of 4 KB-8 KB,
depending on the flash controller. Herein, the term block,
when used by itself, should be understood as referring to these
data blocks. The term erase block will be used when referring
specifically to erase blocks.

The obsolete blocks tend to be scattered about the flash
array, due to the nature of the random updates performed by
the application making use of the data, but a garbage collec-
tion routine running on the flash controller periodically
regenerates entire segments by copying non-obsolete blocks
of data in previously written segments of the array into a
smaller number of new segments and then erasing the old
segments.

Today, new forms of storage devices that employ both flash
memory and hard disks are being marketed. In some
instances, the flash memory portion of these devices is being
used as a cache for data stored on the hard disk. A cache is
generally regarded to be a storage area that holds a subset of
the data stored on a larger, generally slower, device. Here, the
flash memory cache provides faster read access than the hard
disk and so data stored in the cache portion of the device can
be delivered more rapidly than if the data had to be accessed
from the hard disk. Of course, while a flash memory-based
cache offers advantages for reads, the problems inherent with
random writes must still be addressed.

SUMMARY OF THE INVENTION

Embodiments of the present invention provide systems and
methods in which a flash memory controller of a flash array
configured as a cache for a disk-based storage device, con-
solidates information concerning blocks of obsolete data
stored in the flash array with information concerning blocks
of data stored in the flash array that a cache management
routine running on the controller has determined may be
removed from the cache; and erases (or instructs erasure of)
segments containing one or more of the blocks of obsolete
data and the blocks of data that the cache management routine
has determined may be removed from the cache to produce
reclaimed segments of the flash array. Each segment may
include multiple blocks of the flash array. In various embodi-
ments, the blocks of obsolete data may include data that has
been made obsolete as a result of more recent versions of said
data being written to the flash array. Further, the blocks of data
that the cache management routine has determined may be
removed from the cache may include data that is less fre-
quently and/or recently used by an application accessing the
cache than other data stored in the cache.

US 9,176,874 B1

3

Prior to erasing segments containing one or more of the
blocks of obsolete data and the blocks of data that the cache
management routine has determined may be removed from
the cache, the controller may write (or instruct writing) valid
data from the segments to other segments in the flash array. In
some cases, fewer than all of the segments containing one or
more of the blocks of obsolete data and the blocks of data that
the cache management routine has determined may be
removed from the cache are erased. Further, the segments
containing one or more of the blocks of obsolete data and the
blocks of data that the cache management routine has deter-
mined may be removed from the cache may be ranked, and
the segments erased according to their respective rankings.
For example, the segments may be ranked according to a total
number of blocks of obsolete data and the blocks of data that
the cache management routine has determined may be
removed from the cache each contains. Alternatively, the
segments may be ranked according to a percentage of a total
number of blocks of obsolete data and the blocks of data that
the cache management routine has determined may be
removed from the cache each contains to a total number of
blocks in each segment.

The controller may further maintain a direct mapping of
block addresses used by an application accessing data stored
in the storage device with physical locations of said data
within the flash memory.

These and other embodiments of the invention are dis-
cussed further below.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and
not limitation, in the figures of the accompanying drawings in
which:

FIGS. 1A and 1B illustrate examples of storage devices
employing a flash memory-based cache for a hard disk and
configured for operation in accordance with embodiments of
the present invention;

FIG. 2 illustrates an example of a conventional garbage
collection process employed by flash memory storage
devices;

FIG. 3 illustrates distinctions between conventional two-
level mappings required for address translation in a conven-
tional flash memory device and a single level mapping as
employed in embodiments of the present invention;

FIG. 4 illustrates an example of a garbage collection pro-
cess that leverages information concerning cache manage-
ment operations in accordance with embodiments of the
present invention; and

FIG. 5 is a flow diagram illustrating an example of a gar-
bage collection routine that leverages information concerning
cache management operations in accordance with embodi-
ments of the present invention.

DETAILED DESCRIPTION

Described herein are techniques for improving the effi-
ciency of flash memory storage devices when used as a data
cache for hard disks.

As mentioned above, when compared to hard disks, flash
memory provides relatively fast reads, but is slow when it
comes to small writes (i.e., those which do not involve large
amounts of data) at random addresses. Therefore, flash
memory-based storage devices typically coalesce multiple
writes destined for random addresses into contiguous regions
in the flash array. However, such write coalescing requires

30

35

40

45

50

55

60

4

concomitant garbage collection activities, which impose a
significant processing load and impact application perfor-
mance.

While one could, in general, implement a flash memory-
based cache for a hard disk-based storage system simply by
layering some cache management functions (e.g., functions
for maintaining data likely to be used by an application in the
cache while moving other data out of the cache) over a flash
device that incorporates write coalescing, several inefficien-
cies would likely result. Accordingly, the present invention
provides techniques that integrate cache management and
write coalescing to yield efficiencies for such a device. More
specifically, the present invention provides methods and sys-
tems which offer improved reductions in time and space
overhead when looking up data in the cache, and which
reduce the processing load imposed by garbage collection
routines, thereby reducing the impact on application perfor-
mance.

FIG. 1A shows an example of a storage device 100 in which
embodiments of the present invention may be instantiated.
Storage device 100 includes one or more hard disks 102 and
a flash memory-based cache 104. The disks and/or the flash
memory cache may be included in an integrated storage
device 100 or attached as separate devices (see e.g., the
embodiment illustrated in FIG. 1B). The disks 102 and flash
memory-based cache 104 are under the control of a controller
106 A, which may include firmware that instantiates inte-
grated write coalescing/garbage collection and cache man-
agement routines as discussed herein. Storage device 100 is
accessible (e.g., to applications running on a host machine)
via a host interface 108, which may, in general, conform to
specifications for disk-based storage devices common in the
industry (e.g., an advanced host controller interface that uses
a serial ATA bus, a small computer system interface (SCSI) or
variants thereof, or an Internet protocol-based protocol, etc.).
Except where particular protocols are called out, the systems
and methods disclosed herein do not depend on the particular
protocol being used and can be configured to operate cor-
rectly with all of them.

Controller 106 A is, in some embodiments of the invention,
configured such that cache management operations are inte-
grated with write coalescing and garbage collection opera-
tions. This integration is achieved by providing a single map-
ping that maps backend block addresses (BBA) used by
applications seeking to access data stored on storage device
100 to physical locations (PL) in the flash array. This single
level of mapping avoids the need to first translate BBAs to
cache block addresses (CBAs) and then translate the CBAs to
PLs as would be required if cache management operations
remained distinct from write coalescing operations. The map
may be stored in a dynamic random access memory (DRAM)
110 accessible to controller 106A.

FIG. 1B illustrates an alternative example of a storage
device 100, which includes a backend storage device 111,
having a hard disk, and a caching device 112, having a flash
cache, communicatively coupled with one another by an
interface 114. In this example, each of the backend storage
device and the caching device employ a controller, 106B and
106C, respectively. Controller 106B is configured to manage
storing operations involving hard disk 102, while controller
106C is configured to manage storage operations for the
storage device 100" in the manner described above for con-
troller 106 A. Thus, storage operations involving the hard disk
and the flash cache may be distributed across multiple physi-
cal devices, but managed in accordance with the present
invention.

US 9,176,874 B1

5

To better understand the above, consider first how a con-
ventional cache operates. As noted above, a cache generally
stores a subset of the data stored on a larger (in terms of
storage capacity), usually slower (in terms of read time),
device. Thus, using a cache inherently requires a mapping
from the large address space of the slower, backend device to
the smaller address space of the cache. Such cache maps
typically map a block address of the backend storage device
(the BBA) to a block address in the cache (the CBA). If a
block is not in the cache, the cache map does not have an entry
for its BBA.

The CBA is not, however, sufficient in terms of identifying
the actual storage location of data within the flash array.
Recall that because a flash array cannot be written at random,
write coalescing is used to provide certain efficiencies. Refer-
ring to FIG. 2, a portion of a flash array 200 is shown. Assume
that a set of segments 202, -202, of the cache device can each
store four blocks. The segments of the flash array are each of
a fixed (relatively large) size. As an application updates
blocks at arbitrary addresses (5, 2, 8, and 1 in this example),
the writes are coalesced so that the blocks are all written to
segment 202, . This is shown in the top illustration 2(a). While
this sort of write coalescing provides efficiencies in terms of
write times, it means that a second map, one that maps CBAs
to physical addresses within the flash array, must be main-
tained.

As noted, the present invention eliminates the need for
separate BBA-to-CBA and CBA-to-PL. maps and instead pro-
vides a single BBA-to-PL. mapping for a flash memory-based
cache. This is illustrated in FIG. 3. In illustration 3(a), the
conventional two-layer mapping is illustrated with a BBA
300 being provided to a cache map 302 to produce a CBA 304,
and the CBA 304 being provided to a location map 306 to
produce a PL 308. In contrast, the present invention uses a
single cache-location map 310 so that a BBA 300 can be
directly translated to a PL. 308, as shown in illustration 3(b).

But this efficient mapping process is not the only advantage
offered by the present invention. A second efficiency con-
cerns the ability of storage devices configured in accordance
with the invention to reduce the load presented by garbage
collection processes by leveraging the “temperature” of
blocks of data. To better understand this notion, consider the
management operations performed in a conventional cache.

In order to take better advantage of the read speed afforded
by a cache, many devices employ adaptive routines that seek
to ensure data that is used frequently by the host (i.e., appli-
cations running on the host) is always available in the cache.
Typically, this involves making predictions about which data
is likely to be needed (so-called “hot” data) and moving that
data into the cache while also moving data less likely to be
needed (so-called “cold” data) out of the cache to make room
for the hot data. This movement of hot and cold data is
referred to as cache management and while various tech-
niques can be employed to make decisions about which data
should be classified as hot or cold, such details are not critical
to the present invention. That is, the present invention can be
employed with any cache management routine. For example,
cache management routines may determine the likelihood of
access (or “temperature”) of a particular block of data using
heuristics based on how recently and/or frequently the block
was accessed over a period of time, and such routines are well
suited for use in connection with the present invention.

Returning to FIG. 2 and as shown in illustrations 2(5), 2(c)
and 2(d), as an application continues to modify data, addi-
tional writes are made. As before, the writes are coalesced so
that the data blocks are written to contiguous segments 202,
(illustration 2(4)), 202, (illustration 2(c)) and 202, (illustra-

30

40

45

6

tion 2(d)). Notice, however, that in making these writes,
updated versions of previously written blocks 8, 4 and 6 must
be written to new segments of the flash array, rather than
overwriting a previous version thereof. This is an inherent
limitation of write coalescing. The previously written version
of'a block becomes obsolete (as indicated by the cross hatch-
ing of previously written blocks in illustrations 2(5), 2(c) and
2(d)), and a controller in the flash device keeps track of these
obsolete blocks (e.g., either directly or by tracking non-ob-
solete blocks and determining the obsolete blocks indirectly).

As should be apparent from this example, ifthe flash device
were to continue writing new segments as the data is modi-
fied, the entire addressable storage space of the flash array
would quickly be filled. To prevent this occurrence, the flash
device reclaims storage space by identifying segments that
have obsolete versions of data blocks and erasing them.
Before the erase can be made, however, the non-obsolete
blocks in the subject segments must be identified and
“moved” (i.e., copied) to new segments. This is shown in
illustration 2(e).

In this example, segments 202, 202, and 202 were iden-
tified as having obsolete blocks (i.e., blocks 8, 4 and 6). The
remaining blocks in these segments (i.e., blocks 5,2, 1, 3, 7,
9, 4 and 10) were collected and copied into as-yet unused
segments 2025 and 202,. As aresult, segments 202, 2025 and
202, now contain valid data, while segments 202,, 202, and
202, all contain only obsolete data. As illustration 2(f) indi-
cates, the segments containing the obsolete data are then
erased, making them available for reuse.

This process of cleaning up segments that store obsolete
data is known as garbage collection and, as should be appar-
ent from the foregoing discussion, it involves a significant
internal read and write load on the controller of the flash
device. This reduces the available time for processing reads
and writes requested by applications running on a host,
thereby reducing the overall performance of the device. Fur-
ther, the extra writes required for garbage collection reduce
the effective write endurance of the flash.

The present invention improves the efficiency of the gar-
bage collection operations by leveraging block temperature.
Instead of dealing solely with data blocks that are garbage due
to the existence of more recently written versions thereof, the
garbage collection operations of flash devices configured in
accordance with the present invention also treat “cold” data
blocks as if they were garbage and make them eligible for
reclamation as part of the garbage collection operation. As
indicated above, this technique is independent of the actual
criteria used to determine which blocks are sufficiently “cold”
to be treated as obsolete, making it applicable to any cache
management process.

FIG. 4 shows an example of this process. In this sequence
of illustrations 4(a), 4(b) and 4(c), the results of the same
sequence of application updates shown in FIG. 2 are pre-
sented, but this time the effect of treating cold blocks as
garbage is included. So, comparing illustration 4(a) to illus-
tration 2(d), in a portion of a flash array 400, the same blocks
8, 4 and 6 in segments 402,, 402, and 402, have been made
obsolete by newly written blocks 6, 4 and 8 in segments 402,
402, and 402, respectively (note that block 8 in segment 402,
was previously obsoleted by a then-newly written block 8 in
segment 402, but that block was itself obsoleted by the next
writing of block 8 in segment 402,,).

This time, however, the garbage collection routine is pro-
vided with cache management information concerning cold
block 2 in segment 402, cold block 3 in segment 402,, cold
blocks 9 and 10 in segment 402;, and cold blocks 12 and 11
in segment 402,,. The cold nature of these blocks is indicated

US 9,176,874 B1

7

by cross hatching in the opposite direction to that used to
highlight obsolete blocks. The information regarding the tem-
perature of these blocks is provided to the garbage collection
routine in accordance with the present invention and is
obtained from the cache management process that oversees
the caching of data.

When the garbage collection routine now searches for seg-
ments to free up by rewriting non-obsolete blocks to new
segments and erasing the previously used segments, the rou-
tine seeks out those segments that have the greatest number or
highest percentage of garbage blocks, considering cold
blocks as garbage blocks, and treats them as candidates for
reclamation. In this example, as shown in illustration 4(5),
segments 402, 402, and 402, were selected. Blocks 5 and 1
from segment 402,, block 7 from segment 402, and block 4
from segment 402, were rewritten to segment 4025 and the
original copies of these blocks then flagged as obsolete. As
shown in illustration 4(c), this allows three segments, 402,
402, and 402, to be erased, freeing up new storage space for
the application to write to.

Notice that by integrating the cache management and gar-
bage collection operations a significant improvement in
“write amplification” has been achieved. Write amplification
is a measure of the processing load imposed by the garbage
collection operations and can be expressed as a ratio of the
total number of blocks written within the flash array (because
of'either application updates or garbage collection) to the total
number of blocks updated by the application. In the stable
state, the number of blocks written by the application is equal
to the number of blocks freed by the garbage collection (GC)
operation; therefore, the write amplification may be
expressed as:

Write Amplification=(# of blocks copied by GC+# of
blocks freed by GC)/# of blocks freed by GC

In the example shown in FIG. 2, the garbage collection
operation copied current blocks from three segments into two
segments, effectively generating one additional free segment
that could be used for application updates. Therefore, the
write amplification of the device which performed those
activities could be expressed as:

Write Amplification=(8+4)/4=3

In general write amplification is the inverse of the average
fraction of obsolete or garbage blocks in segments collected
by the garbage collection routine.

In comparison, the process illustrated in FIG. 4 yields:

Write Amplification=(4+8)/8=1.5

This represents a move of data from three segments to one
segment to free up two segments and provides a write ampli-
fication one-half that of the scenario depicted in FIG. 2.
Lower write amplification indicates a reduced processing
load and so is a desirable goal. Again, the write amplification
is, in general, the inverse of the average fraction of garbage
blocks, which now includes both obsolete and cold blocks.

This reduction in garbage collection load is not possible
where cache management is simply layered over a device that
performs write coalescing and garbage collection. In such a
scheme, the garbage collection routine would not have infor-
mation concerning cold blocks and so no efficiencies would
be obtained. Instead, as provided by the present invention,
this significant improvement requires that the cache manage-
ment operations be integrated with the garbage collection and
write coalescing operations of the flash device.

Further expediency simplifications could be achieved if a
flash memory device can be permitted to actually drop some

10

15

20

25

30

35

40

45

50

55

60

65

8

non-garbage blocks of data instead of having to rewrite same
to other segments during the garbage collection operations.
That is, in situations where it is not critical that data be
retained in the flash memory, for example where the flash
memory serves as a cache for another persistent storage
device or medium, the garbage collection routine could be
configured to simply treat as garbage all of the blocks of
segments that are comprised of mostly obsolete or cold
blocks, even where no other copies of some of the blocks in
that segment exist in the cache. This may be useful, for
example, where space must be freed on an urgent basis or in
other circumstances where it is more important to ensure
space is available for new data than to ensure that old data is
available in the cache. Segment 402, in illustration 4(a) illus-
trates an example of a segment that could be treated in this
fashion should the need arise.

It is also worth noting that the garbage collection routine
need not address all possible segments having obsolete or
cold blocks each time segments are to be reclaimed (i.e., for
each garbage collection operation, only a portion of the total
number of available segments are reclaimed, generally those
having the highest number or percentage of obsolete/cold
blocks). Notice in FIG. 4 that blocks 11 and 12 in segment
402, were recognized as being cold, but these blocks were
allowed to survive the garbage collection operations. In illus-
tration 4(c), block 12 has reverted to “hot” status (a determi-
nation made by the cache management routine) and since it
was not erased as part of the garbage collection operation is
still available in the flash array. If the device is used as a cache,
this would improve overall read times for this block.

In a related aspect of the present invention, extensions can
be made to an ATA or SCSI “trim” command. The trim
command has been proposed as a means of allowing applica-
tions to indicate that a filesystem can “trim” certain blocks of
storage space which are not currently allocated within the
filesystem. In accordance with the present invention, this
technique can be extended to provide a command that notifies
a storage device of changes in a block’s temperature (e.g.,
from hot to cold or vice versa). This would allow the storage
device to take actions similar to those discussed above with
reference to FIG. 4 and reduce its garbage collection load by
treating cold blocks as being eligible for erasure. However,
such a use of the trim command would not be optimal because
it would not allow the cache management routine to revert a
cold block of data to hot status (i.e., a “trimmed” block of data
cannot be “untrimmed”). The above-described integration of
cache management and garbage collection permits such
reversion.

The present invention thus provides efficiencies by con-
solidating the mapping of block addresses to physical
addresses into a single map, without the need for an interme-
diate cache block map, and further by integrating cache man-
agement with write coalescing and garbage collection. FIG. 5
is a flow diagram illustrating an example of a process 500
which may be performed by a flash controller in accordance
with the present invention.

At502, a garbage collection routine in accordance with the
invention is initiated. As part of this routine, at 504, obsolete
blocks are identified. The identification may be done as in
conventional garbage collection routines.

At 506, information from a cache management routine
(which may also be executing on the controller) regarding
cold blocks is obtained. The information may, for example, be
read from a table maintained by the cache management rou-
tine and indicate which blocks are considered to be cold. Note
that the determination as to whether a block is hot or cold may

US 9,176,874 B1

9

be made in any conventional fashion, for example on the basis
of which blocks are least recently used by an application, or
other criteria.

At 508, the process identifies those segments of the flash
array having obsolete and/or cold blocks and, optionally at
510, may select a subset of those segments to be reclaimed.
This is an optional step because in some implementations a
garbage collection routine may simply reclaim a pre-estab-
lished number of segments each time it executes, for example
any number of segments from one to all eligible segments
may be reclaimed (although in most cases it will be best to
limit reclamation to some number of segments less than all
eligible segments in order to reduce the processing burden
imposed by the garbage collection routine).

In determining which segments to reclaim, the garbage
collection routine may rank the eligible segments (a segment
is eligible if it has at least one obsolete or cold block) in terms
of the number of obsolete/cold blocks they contain (or, con-
versely, the number of valid blocks they contain). For
example, segments having more (e.g., either literally or on a
percentage of blocks-to-segment basis) obsolete/cold blocks
may be ranked higher than those having fewer obsolete/cold
blocks. The garbage collection routine may operate to reclaim
segments in order of rank from such a list, for example, each
time reclaiming some pre-determined number of the ranked
segments or some pre-determined fraction thereof. Alterna-
tively the number of segments to be reclaimed may be deter-
mined dynamically based on a present processing load on the
controller.

Regardless of how the segments identified for reclamation
are determined, at 512 the valid data, if any, from those
segments are rewritten to fresh segments as discussed above.
This allows the copies of those previously valid blocks to now
be identified as obsolete in the segments from which they
were copied and, at 514, those segments are then erased. That
is, the segments are reclaimed for use by an application run-
ning on a host that is accessing the storage device in which the
flash device is operating, for example as a cache.

At 516, the process checks to see if it is done with the
reclamation process and, if so, quits at 518. Otherwise, the
process repeats from 504 by identifying new segments having
obsolete blocks. In many instances, process 500 will execute
continually in the background on the controller.

Thus, techniques for improving the efficiency of flash
memory, especially when used as a data cache for hard disks,
have been described. In the foregoing description, several
examples were set forth and discussed in detail, but these
examples should not be read as limiting the present invention,
which is best measured in terms of the claims that follow.

10

15

20

30

35

40

45

10

What is claimed is:

1. A method, comprising:

receiving, by a controller of a storage system, a request for

data stored at a first block address of'a disk-based storage
unit of the storage system;

in response to the request, accessing by the controller a

direct mapping which maps respective block addresses
of the disk-based storage unit with respective physical
addresses of a flash memory-based cache of the storage
system; and

if an entry for the first block address exists in the direct

mapping, (i) translating, by the controller via the direct
mapping, the first block address into a first physical
address of the flash memory-based cache, and (ii) return-
ing by the controller data stored at the first physical
address of the flash memory-based cache; otherwise,
returning by the controller the data stored at the first
block address of the disk-based storage unit.

2. The method of claim 1, wherein the data stored at the first
physical address of the flash memory-based cache corre-
sponds to the data stored at the first block address of the
disk-based storage unit.

3. The method of claim 1, wherein the direct mapping is
stored in a dynamic random access memory (DRAM) acces-
sible to the controller.

4. A storage system, comprising a flash memory-based
cache, a disk-based storage unit, and a controller communi-
catively coupled to the flash memory-based cache and the
disk-based storage unit, the controller configured to:

receive a request for data stored at a first block address of

the disk-based storage unit;

access a direct mapping which maps respective block

addresses of the disk-based storage unit with respective
physical addresses of the flash memory-based cache;
and

if an entry for the first block address exists in the direct

mapping, (i) translate via the direct mapping the first
block address into a first physical address of the flash
memory-based cache, and (ii) return data stored at the
first physical address of the flash memory-based cache;
otherwise, return the data stored at the first block address
of the disk-based storage unit.

5. The storage system of claim 4, wherein the data stored at
the first physical address of the flash memory-based cache
corresponds to the data stored at the first block address of the
disk-based storage unit.

6. The storage system of claim 4, wherein the direct map-
ping is stored in a dynamic random access memory (DRAM)
accessible to the controller.

#* #* #* #* #*

